
 

  
Abstract— Neuromodulators can have a strong effect on how 

organisms learn and compete for resources. Neuromodulators, 
such as dopamine (DA) and serotonin (5-HT), are known to be 
important in predicting rewards, costs, and punishments. To 
better understand the effect of neuromodulation on decision-
making, a computational model of the dopaminergic and 
serotonergic systems was constructed and tested in games of 
conflict. This neural model was based on the assumptions that 
dopaminergic activity increases as expected reward increases, 
and serotonergic activity increases as the expected cost of an 
action increases. Specifically, the neural model guided the 
learning of an agent that played a series of Hawk-Dove games 
against an opponent. The model responded appropriately to 
changes in environmental conditions or to changes in its 
opponent’s strategy. The neural agent became Dove-like in its 
behavior when its dopaminergic system was compromised, and 
became Hawk-like in its behavior when its serotonergic system 
was compromised. Our model suggests how neuromodulatory 
systems can shape decision-making and adaptive learning in 
competitive situations. 
 

Index Terms— Dopamine, Serotonin, Game Theory, 
Computational Neuroscience, Decision-Making 

I. INTRODUCTION 
euromodulators, such as dopamine (DA) and serotonin 
(5-HT), are known to be important in predicting rewards, 

costs, and punishments.  
Dopamine activity (DA), which originates in the ventral 

tegmental area (VTA) and the substantia nigra (SN), appears 
to be linked to expected reward [1], and incentive salience or 
“wanting” [2]. Alternatively, it has been proposed that DA is 
involved with the discovery of new actions, and influenced 
action-outcome contingencies [3]. In all of these variants, DA 
is an important signal for the acquisition of salient, value-
laden objects. 

Serotonin (5-HT), which originates in the Raphe nucleus, 
appears to be related to cognitive control of stress, social 
interactions, and risk taking behavior [4, 5]. The structures 
that are innervated by 5-HT and their connecting circuits 
modulate the behavioral response to threats and risks, that is, 
behaviors that are typically thought to reflect the anxiety state 
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of the organism [4]. Whereas dopamine is tied to the expected 
reward of a given decision, serotonin could be thought of as 
related to the expected cost of a decision. 

Game theory has been useful for understanding risk-taking 
and cooperation [6]. Of particular interest are studies in which 
neuromodulators were depleted or altered, while subjects play 
games. In one study, subjects, who were 5-HT depleted 
through dietary changes, cooperated less in a Prisoner’s 
Dilemma game [7]. In an ultimatum game study, 5-HT 
depleted subjects tended to reject monetary offers more than 
control subjects when they deemed the offers to be unfair [5]. 
Manipulations of dopamine levels can significantly alter the 
ability to assess rewards in humans [8].  

To better understand the roles of dopamine and serotonin 
during decision-making in games of conflict, we developed a 
computational model of neuromodulation and action-selection, 
based on the assumption that dopamine levels are related to 
the expected reward of an action, and serotonin levels are 
related to the expected cost of an action.  An agent, whose 
behavior was guided by the neural model, played the Hawk-
Dove game against different opponents. In the Hawk-Dove 
game, players must choose between confrontational and 
cooperative tactics [6, 9]. The results of these modeling 
experiments suggest a mechanism of how the 
neuromodulatory systems adapt behavior and decision-making 
under varying environmental conditions and opponents. 

II. METHODS 

A. Hawk-Dove Game 
Two agents played a variant of the Hawk-Dove game [10]; 

one agent was a computer model, whose actions were guided 
by a rigid strategy (Opponent), the other agent was a neural 
network model that mimicked the effects of serotonin and 
dopamine on action selection and learning (Neural). 

At the start of the game, both agents were randomly placed 
in an area where there was a territory of interest (TOI). 
Assuming both agents moved at the same speed, they would 
have an equally likely chance of reaching the TOI first. The 
agent that reached the TOI first could open with an Escalate 
(i.e. an aggressive, confrontational tactic) or a Display (i.e. a 
nonviolent, cooperative tactic). The second agent to reach the 
TOI could respond with an Escalate or Display. The payoff 
matrix for this game is given in Table I. If both agents 
Escalate, they received a penalty that was either a serious 
injury (large penalty) or just a scratch (small penalty). The 
probability of serious injury was set to 0.25 or 0.75 at the start 
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of the game. If both agents displayed, they shared the TOI 
resource. If one agent selected to Escalate and the other to 
Display, the agent that escalated got the entire resource. 

 
TABLE I 

PAYOFF MATRIX FOR HAWK-DOVE GAME BETWEEN PLAYERS A AND B 
 B. Escalate B. Display 

A. Escalate A: (V–D)/2, B: (V–D)/2 A: V, B: 0 

A. Display A: 0, B: V A: V/2, B: V/2 
V is the value of the resource and is set to 0.60. D is the damage incurred 

when both players escalate. D is set to 1.60 for a serious injury and 0.62 for a 
scratch. The probability of a serious injury varies under different game 
conditions. 

B. Opponent Agent 
The Opponent followed one of 3 strategies. In one strategy, 

referred to as the Statistical model, the agent had a probability 
of escalation independent of the Neural agent’s tactics, which 
was set at the beginning of the game to 0.25 or 0.75. In the 
second strategy, referred to as Tit-For-Tat (TT), the computer 
model always repeated the Neural agent’s previous move. The 
only exception to this rule was if the Opponent agent reached 
the TOI first in the opening game, in which the Opponent 
opened with a Display. TT is a simple, yet effective strategy in 
game theory, which has shown to be successful in game 
playing tournaments [9]. The third strategy referred to as Win-
Stay, Lose-Shift (WSLS), the Opponent agent would win and 
stay with the same action in one of two possibilities; the 
Opponent agent’s Escalation is met with the Neural agent’s 
Display or the Opponent agent’s Display is matched by a 
Neural agent’s Display, otherwise the Opponent agent 
resorted to a lose and shift action [11]. As with the TT 
strategy, the WSLS opponent would open with a Display 
action if it arrived at the TOI first on the first game. 

  
Fig. 1. Architecture of the neural model (two Neuromodulatory: Raphe and 
VTA; three TOI-State: Open, Escalate, and Display; and two Action: Escalate 
and Display). The solid arrows extending from the TOI-State neurons 
represent all-to-all connections. The shaded oval and dotted arrows represent 
plasticity of the pathways. Within the Action neurons, the line with the arrow 
at the end represent excitation, and the line with the dot at the end represent 
inhibition. 

C. Neural Agent 
A neural network controlled the behavior of the Neural 

agent. The neural network had three areas: TOI-State, Action, 
and Neuromodulator (Fig. 1). 

There were three neurons in TOI-State area that 
corresponded to the possible tactics the Opponent agent could 

take: 1) Open. The Neural agent reached the TOI first. 2) 
Escalate. The Opponent agent reached the TOI first and 
escalated a conflict. 3) Display. The Opponent agent reached 
the TOI first but did not start a conflict. The equation for the 
activity of each of these neurons (ni) was set based on the 
current state of the TOI: 

€ 

ni =
0.75+ rnd(0.0, 0.25); i = TOIState

rnd(0.0, 0.25);                              Otherwise

 
 
 

 (1) 

where rnd(0.0,0.25) was a random number uniformly 
distributed between 0.0 and 0.25. 

There were two neurons in the action area: 1) Escalate. The 
Neural agent escalated a conflict. 2) Display. The Neural 
agent did not start a conflict or retreated if the Opponent agent 
escalated. The neural activity was based on synaptic input 
from TOI-State neurons and neuromodulation. 

There were two neurons in the neuromodulator area:  
1) Raphe. A simulated raphe nucleus and the source of 
serotonergic neuromodulation. 2) VTA. A simulated ventral 
tegmental area and the source of dopaminergic 
neuromodulation. The activity of these neurons was based on 
synaptic input from the TOI-State. 
 

TABLE II 
SYNAPTIC CONNECTIONS BETWEEN NEURAL AREAS 

 
From 

 
To 

Initial 
Weight 

 
Plastic 

Phasic 
Neuromodulation 

TOI-State Action 0.1 Y Y 
TOI-State Neuromodulator 0.1 Y N 

Action 
Escalate 

Action 
Display 0.1 N N 

Action 
Escalate 

Action 
Display -0.1 N Y 

Action 
Display 

Action 
Escalate 0.1 N N 

Action 
Display 

Action 
Escalate -0.1 N Y 

 
The synaptic connectivity of the network is shown in Fig. 1 

and in Table II. The connections, given by each row in Table 
II, were all-to-all (i.e. every pre-synaptic neuron connected 
with every post-synaptic target). Some of these connections 
were subject to synaptic plasticity, and other connections were 
subject to phasic neuromodulation, where the activity of the 
Neuromodulator area could affect the synaptic efficacy. 
The neural activity was simulated by a mean firing rate neuron 
model, where the firing rate of each neuron ranged 
continuously from 0 (quiescent) to 1 (maximal firing). The 
equation for the mean firing rate neuron model was: 

€ 

si t( ) = ρisi t−1( )+ 1− ρi( ) 1

1+ exp −5Ii t( )( )

 

 

 
 

 

 

 
 
 (2) 

where t was the current time step, si was the activation level of 
neuron i, ρi was a constant set to 0.1 and denoted the 
persistence of the neuron, and Ii was the synaptic input. The 
synaptic input of the neuron was based on pre-synaptic neural 
activity, the connection strength of the synapse, and the 
amount of neuromodulator activity: 

€ 

Ii t( ) = rnd −0.5,0.0( )+∑
j
nm t−1( )wij t−1( )s j t−1( )  (3) 

where wij was the synaptic weight from neuron j to neuron i, 



 

and nm was the level of neuromodulator at synapse ij. Phasic 
neuromodulation had a strong effect on action selection and 
learning. During phasic neuromodulation, synaptic projections 
from sensory systems (e.g. visual, auditory, etc) and inhibitory 
neurons were amplified relative to recurrent or associational 
information [12-14]. To simulate the effect of phasic 
neuromodulation, inhibitory and sensory connections were 
amplified by setting nm (equation 3) to ten times the combined 
average activity of the simulated Raphe, and VTA neurons. 
Otherwise, nm was set to one for recurrent or association 
connections. The last column of Table II lists connections 
amplified by phasic neuromodulation. 

Action selection depended on the summed activity of the 
Action neurons after the neural agent reached the TOI. When 
the Neural agent reached the TOI, neural activities of the 
Action and Neuromodulator neurons were calculated for ten 
time-steps (equations 1-3). The Action neuron with the largest 
total activity during those ten time-steps dictated the action to 
be taken (e.g. if the total Display activity was greater then 
Escalate, the agent Displayed). 

After both the Opponent and Neural agents chose a tactic, a 
learning rule, which depended on the current activity of the 
pre-synaptic neuron, the post-synaptic neuron, the overall 
activity of the neuromodulatory systems and the payoff from 
the game, was applied to the plastic connections (Table II). 

€ 

Δwij =δ *nm t−1( )s j t−1( ) si t−1( )( )*R  (4) 

where sj was the pre-synaptic neuron, si was the post-synaptic 
neuron, δ was a learning rate set to 0.1, nm was the average 
activity of all neuromodulatory neurons, and R was the level 
of reinforcement based on payoffs and costs (equation 5). The 
pre-synaptic neuron (sj) in equation 4 was the most active 
TOI-State neuron. The post-synaptic neuron (si) was either the 
most active Action neuron, the Raphe neuron, or the VTA 
neuron. Weights were normalized by the square root of sum of 
squared weights. 

The level of reinforcement (R, equation 4) was: 

€ 

      R =

(Reward − VTA) − (Cost − Raphe);     TOI - State  →   Action connection

Reward − VTA;                          TOI - State  →   VTA  connection

Cost − Raphe ;                            TOI - State  →   Raphe connection

 

 
 

  
 (5) 

where the Reward was the Neural agent’s payoff from Table I 
divided by the maximum possible reward. It was assumed that 
serotonergic plasticity was based on the expected cost of an 
action and dopaminergic plasticity was based on the expected 
reward of an action. If the Raphe or VTA accurately predicted 
the respective cost or payoff of an action, learning ceased. The 
Neural agent’s cost was 1 if seriously injured, the ratio of 
scratch to serious injury (i.e. 0.3875, Table I) if scratched, or 
zero otherwise. 

D. Game Playing 
A game consisted of both agents (Opponent and Neural) 

taking a single action in response to a TOI (i.e. Escalate or 
Display). At the start of each game the agents were randomly 
placed in a square grid (not occupying the same area) and 

were modeled to approach the neutral TOI at the same speed. 
The agent that arrived at the neutral TOI first had the 
opportunity to take either of the two possible actions (Escalate 
or Display), and the agent that arrived second responded with 
one of the two possible actions. After each game, the payoff 
was calculated and the plastic connections were updated. 

A series consisted of 100 games with a given parameter set 
(e.g. Control agent against the TT opponent with serious injury 
set to 0.75). At the start of each series, the neural network was 
initialized and the Neural agent was considered “naïve”, that 
is, the weights of the network were set to their initial values 
(Table II). For each parameter set, the two agents played 100 
Hawk-Dove series with a different random number seed.  

III. RESULTS 
During the course of a series, the Neural agent learned to 

adopt different strategies depending on the chance of serious 
injury and its Opponent’s strategy. To ensure that these 
strategies did not occur by chance, 100 randomly behaving 
agents played against all three Opponents. The random agents 
had lesions (i.e. activity set to zero) of both the simulated VTA 
and Raphe, which resulted in no learning occurring (equation 
4). The 95th percentile of a confidence interval for the random 
agents was used as the cutoff for gauging non-random 
behavior. This cutoff corresponded to the probability of 
selecting a particular action in response to a given TOI-State 
greater than 65% or less than 35% of the time. 

 
Fig. 2. The pie charts show the proportion of probable actions taken by the 
Neural agent in 100 series of games. There are three TOI-States (Open, 
Escalate, and Display), and three outcomes the Neural agent can commit to: 
Escalate (E), Display (D) or Undecided (U). Undecided represents random 
choice between ‘E’ and ‘D’. The labels represent the Neural agent’s response 
to the three TOI-State areas. Strategies that are Dove-like are displayed in 
blue, Hawk-like are displayed in red, and arbitrary strategies displayed in 
yellow. 

 

A. Response to Environmental Change and Opponent 
Tactics 
The Control agent adapted its behavior depending on its 

opponent’s strategy and environmental conditions (Fig. 2). In 
response to a given TOI-state, the agent could respond 
randomly (i.e. within the 95% confidence), or significantly 
tend toward escalation or displaying. Therefore, there are a 
total of 27 possible outcomes the Neural agent can take with 
respect to the three different TOI-States. Only a few of these 
outcomes emerged in the simulations, and these outcomes are 



 

represented in Fig. 2 as a triplet pairing (i.e., EEE, DDE, 
UDE, etc.). The first value in the triplet pairing corresponds to 
the expected action when the TOI-State is Open. The second 
represents the anticipated action when the TOI-State is 
Escalate. Lastly, the third value denotes the expected outcome 
when the TOI-State is Display. For instance, if the triplet 
pairing reads DDE, then that means the Neural agent tends to 
display when the TOI is Open, display when the Opponent 
escalated, and escalate when the Opponent displayed. These 
triple pairings are associated with a color spectrum, where 
aggressive outcomes (instances of ‘E’ in the triplet) are 
denoted red, passive outcomes (instances of ‘D’ in the triplet) 
are denoted in blue, and values that do not fall within either 
outcome (instances of ‘U’ in the triplet) are denoted in yellow. 
Against all three Opponent types, the Neural agent adopted 
Hawk-like behavior in “safe” environments, where the 
probability of a serious injury is 0.25 (top row, Fig. 2), and 
Dove-Like behavior in “harsh” environments, where the 
probability of a serious injury is 0.75 (bottom row, Fig. 2).  

B. Effect of Lesions on Behavior 
A set of simulated lesion experiments to the Raphe and 

VTA areas were carried out to assess whether an intact 
neuromodulatory system was necessary for the Neural agent 
to respond appropriately to changes in the environment and an 
opponent’s strategy.  

TABLE III 
PERCENTAGE OF ESCALATION FOR THE NEURAL AGENT 

 Control Agent  Raphe Lesion VTA Lesion 
 Safe Harsh Safe Harsh Safe Harsh 

Statistical 97.65% 10.00% 99.06% 92.86% 34.79% 7.14% 
TT 34.15% 13.64% 81.82% 81.82% 24.74% 12.50% 

WSLS 93.22% 9.09% 96.88% 96.88% 20.93% 8.22% 
 
A simulated lesion to the serotonergic system (Raphe) 

resulted in an inability to assess the cost of a decision. Table 
III depicts the total percentage of escalations across all games 
and series. Table III shows that the Raphe agent had a 
significantly higher percentage of escalation than other agents 
in the harsh environment per opponent (p << 0.0001, 
Wilcoxon Rank Sum). This suggests that when the Raphe area 
was removed, the agent behaved exclusively Hawk-like, even 
against the TT and WSLS opponents. By comparison, in Table 
III, the Control agent with the Raphe area intact—dropped its 
percentage of escalation as the Opponent became more 
sophisticated and the environment became harsher (p << 
0.0001, Wilcoxon Rank Sum). Because the Raphe agent could 
not judge the cost of escalating, it relied solely on its ability to 
assess reward through its intact VTA area, resulting in 
Escalating where there is an expectation of larger rewards. 

A simulated lesion to the dopaminergic system (VTA) 
revealed an inability to assess the reward of a decision. Table 
III shows that the VTA agent had a significantly lower 
percentage of escalation (i.e., higher percentage of displaying), 
than the other agents in the safe environment (p << 0.0001, 
Wilcoxon Rank Sum). The VTA agent behaved more Dove-
like than the Control agent. In contrast, the Control agent, 
which had the VTA area intact, increased its percentage of 

escalations as the environment became more forgiving (see 
Table III). These results imply that the VTA agent could assess 
the cost of escalating, but not the value of reward, and 
consequently adopted Dove-like behavior. 

C. Effect of Lesions on Payoffs 
The inability to assess cost due to a Raphe lesion not only 

impacted the Neural agent’s ability to obtain optimal payoff 
for itself, but for its opponent as well (see Fig. 3). All 
Opponents against the Raphe agent received a lower payoff 
compared to the Opponents playing against any other Neural 
agent (p << 0.0001, Wilcox Rank Sum). For example, the 
Control agent and its Opponent received a higher payoff than 
the Raphe and its Opponents in all conditions (compare 3A 
with 3B).  

  

 
Fig. 3. Average payoff score for the Neural (N) and Opponent (O) agents. The 
Neural agent conditions include: A. Intact simulated neural network with 
learning capabilities (CTL). B. Lesion to the simulated Raphe nucleus 
(Raphe). C. Lesion to the simulated Ventral Tegmental Area (VTA). D. 
Lesion to both the Raphe and VTA (Dual). The columns correspond to the 
different Opponent strategies: Statistical, Tit-For-Tat (TT), and WSLS 
(WSLS). The red line in the box plots shows the median values and the blue 
ends to the box show the 25th and 75th percentiles. 
 

Lesioning the VTA area resulted in lower payoffs for the 
Neural agent and higher payoffs for its opponent compared to 
that of controls (compare Fig. 3C with Fig. 3D). In safe 
environments, the VTA agent received significantly lower 
payoffs against the Statistical and WSLS opponents than the 
intact model (p << 0.0001, see Neural payoff in Statistical and 
WSLS in Fig. 3D). Because the VTA agent could not assess 
reward but could still assess cost, it adapted its behavior to a 
low-risk Dove strategy. This allowed its opponent to escalate 
without being penalized and receive maximum rewards at the 
VTA agent's expense, while the VTA agent received minimal 
injuries. 

 Random behavior resulted from the non-learning, dual 
lesion case. By definition, the Dual agent escalated 
spontaneously ~50% of the games in a series. This resulted in 
sub-optimal payoffs to both agents (p << 0.0001). Dual 
received a higher payoff than Control against WSLS opponent 
because Hawk-like behavior resulted in greater payoff to the 
Neural agent (p << 0.001, compare Fig. 3B: (WSLS) Neural 
to 3A: (WSLS) Neural and 3B: (WSLS) Neural), and random 
behavior is ~50% Hawk-like. Thus, Dual received a higher 
payoff than Control against WSLS, but this was an artifact of 
random actions against the WSLS strategy. The fact that Dual 



 

utilized a fixed strategy illuminates the learning that took 
place as a result of the intact neuromodulatory system in 
Control (p << 0.001). 

IV. DISCUSSION 
In the present paper, we showed that an agent, whose 

behavior was guided by a computational model of 
neuromodulatory action, learned to adjust its strategy 
appropriately depending on environmental conditions or its 
opponent’s strategy in the Hawk-Dove game. Lesions of the 
simulated neuromodulatory system resulted in perseverating 
behavior and detrimental performance to both the Neural 
agent and its Opponent. The model makes several predictions 
on how the action of neuromodulatory systems can lead to 
appropriate action selection in competitive and cooperative 
environments. 

A. Neuromodulators Track Expected Rewards and Costs 
In constructing the model, it was assumed that 

dopaminergic activity increased as expected reward increased, 
and that the serotonergic system increased as the expected cost 
of an action increased. When the Neural agent’s dopaminergic 
system was compromised, it was unable to predict the payoff 
associated with an action and resorted to Dove-like behavior 
(VTA in Table III). In contrast, when the Neural agent’s 
serotonergic system was compromised, it became Hawk-like 
in its behavior (Raphe, Table III). Indeed, the activity of 
neurons in the simulated neuromodulatory area reflected the 
differing rewards and costs associated with the different 
strategies adopted by the Neural agent. 

Dopamine appears to be important for reward anticipation 
[15], and the “wanting” of things, that is, the motivation 
process in acquiring an object [2]. Therefore, having the 
dopamine activity related to the reward payoff in the game 
(equation 5) appeared to be a reasonable assumption. 

On the other hand, serotonergic activity appears to modulate 
behavioral response to risks, stress, and threats [4, 16], as well 
as playing an important role in social anxiety in primates [17]. 
All of these risks and threats have a cost associated with them. 
Moreover, reduced serotonin transmission is associated with a 
release of aversive or punishing responses [18]. Therefore, it 
seemed reasonable to assume that serotonin activity is related 
to the expected cost of a given action. 

Given these assumptions, the Control agent, adjusted its 
strategy appropriately depending on environmental conditions 
and on its Opponent’s strategy (Fig. 2). For example, in 
situations where it was more likely to sustain a serious injury 
during a confrontation, the Control agent’s behavior became 
more Dove-like. This resulted in an increase in Display and 
decrease in Escalate actions when playing against the 
Statistical or WSLS models (see Table III), as well as a 
decrease in random behavior when playing against a TT 
opponent (Fig. 2: middle column). The Control agent learned 
that there was an increased cost and decreased reward to be 
expected by escalating a confrontation when the probability of 
serious injury increased. No matter which Opponent the 
Control agent faced, it learned to alter its strategy to take 

advantage of a no cost escalation in response to its Opponent 
Display 1st action. This can be seen in Fig. 2 for all tactics that 
end in E (e.g. DDE or EDE). 

The adaptive behavior demonstrated by the Control agent 
required an intact neuromodulatory system in which the agent 
could evaluate the expected cost and the expected reward of a 
given action. When the simulated dopaminergic or the 
simulated serotonergic systems were lesioned, the Neural 
agent’s behavior became either completely Hawk-like (Raphe 
lesion), or completely Dove-like (VTA lesion). It is clear that 
extreme Hawk-like tactics can be viewed as uncooperative and 
is in agreement with behavioral studies in which serotonin 
levels were lowered [4, 19-21]. But it is less obvious how the 
VTA lesion is altering the agent’s behavior.  

In the present simulation study, lowering dopamine results 
in the Neural agent avoiding risks that lead to a higher payoff. 
These results are in agreement with a study in which a 
blockade of dopamine resulted in rats not making an extra 
effort of climbing over a barricade to get a high reward [22]. 
Moreover, a recent study has shown that individuals with a 
polymorphism that lowers levels of dopamine in the prefrontal 
cortex tended to take less risks in a gambling task [23]. Our 
results predict that by lowering dopamine levels, the agent 
loses its ability to assess forthcoming rewards, which results in 
risk averse behavior. 

Our results predict that by lowering serotonin levels, the 
agent loses its ability to assess cost, and therefore achieving 
higher payoff is driving its actions. This results in Hawk-like 
behavior and is in agreement with recent human studies under 
similar conditions. In one study, humans played the Prisoner’s 
Dilemma game (essentially equivalent to the Hawk-Dove 
game) under conditions that varied their tryptophan levels by 
Acute Tryptophan Depletion (ATD) [7]. Subjects defected 
against their opponent significantly more when their serotonin 
levels were low. This is the equivalent of escalating in the 
present Hawk-Dove game. In another ATD study where 
subjects played the Ultimatum Game, participants with 
depleted 5-HT levels rejected significantly more of the unfair 
offers [5]. 

B. Comparison to Other Models 
Other computational models such as Evolutionary 

Algorithms and Reinforcement Learning have been effective 
in developing optimal strategies in games of conflict [24-27]. 
Soltani, Lee, and Wang showed that monkeys tend towards a 
WSLS strategy when the model utilized a Reinforcement 
Learning algorithm, which used the sequence of the monkey’s 
choices for the given day [28]. Although our model shows 
many of these interesting adaptive behaviors, the main 
purpose of our approach was to better understand the role of 
neuromodulation in cooperative behavior. Game theory is one 
such method for studying this behavior. It may be of interest 
in the future to pit our neurobiologically inspired model 
against some of these reinforcement learning and evolutionary 
algorithms. 

Computational models have been developed to emulate 
neuromodulatory processes during decision-making or action 



 

selection [28]-[31]. One model integrated four neuromodulator 
systems into the temporal difference (TD) equation; with 
different parameters representing different neuromodulators; 
DA for reward prediction, 5-HT for discounting, 
norepinephrine (NE) for exploration/exploitation, and 
acetylcholine (ACh) for learning rate [29]. Daw, Kakade, and 
Dayan proposed a model in which dopamine and serotonin 
levels track predicted rewards and punishments [30]. This 
differs from our model in that punishments and rewards are 
not necessarily mutually inhibitory. Our model takes into 
consideration that an action could have independent costs and 
rewards associated with it (i.e., an action may have a high 
predicted reward, and a high predicted cost). 

Although our model of neuromodulation has many 
similarities to these models, we designed our model with a 
specific hypothesis on the role of phasic neuromodulation. 
Specifically, (i) the common effect of the neuromodulatory 
systems is to drive an organism to be decisive when 
environmental conditions call for such actions, (ii) the main 
difference between neuromodulatory systems is the 
environmental stimuli that activate them, (iii) phasic 
neuromodulation can increase the signal to noise ratio of 
downstream neuronal targets by amplifying connections 
carrying sensory information and, (iv) phasic neuromodulation 
gates in learning [14, 31]. By using game theory to test our 
hypothesis, the present study extends our previous work by 
investigating the role of neuromodulation in learning. 

Our model suggests a simple mechanism for adaptive 
behavior in competitive and cooperative situations. It is based 
on the assumptions that activity in the dopaminergic system is 
related to the expected reward of an action, and activity in the 
serotonergic system is related to the expected cost of an 
action. 

The model makes the following predictions: 1) An intact 
neuromodulatory system is necessary for appropriate decision 
making and adapting to the environment in situations where 
cooperation is important. 2) Impairment to either the 
dopaminergic or serotonergic system will lead to perseverant 
behavior. Impairment of the dopaminergic system results in 
risk-averse behavior, and impairment of the serotonergic 
system results in risk-taking behavior. 3) Although dopamine 
and serotonin activity appears to be related to different 
expectations (e.g. predictive reward, anticipated cost), the 
action of these neuromodulators on downstream targets is 
similar, that is it governs decision-making. 
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